REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

The numbers in brackets are assigned according to the indexing system printed in Volume 28, Number 128, October 1974, pages 1191-1194.

38 [9].-Peter Hagis, Jr. \& Wayne L. McDaniel, A Proof that Every Odd Perfect Number has a Prime Factor Greater than 100110, typed ms. of 13 pp. deposited in the UMT file.

This ms. supplements the authors' paper [1], which appears elsewhere in this issue, by including: (1) some additional clarifying text; (2) two sequences (A)-(P) and (a)(m) of trees of factorizations and deductions, which complete the details of two proofs in [1] ; and (3) a table giving, for the 62 odd $p \leqslant 307$, and 54 larger p, the factorizations, needed for those trees, of all $F_{Q}(p)$ (for Q prime, and $\neq 2$ if $p \not \equiv 1$ (4)) all of whose prime divisors are $<L=100110$. To make this table, it sufficed, by a theorem of Kanold, to consider, for each p, all $Q<L / 2$. For those p 's and this large range of Q, the Q 's actually yielding such factorizations were $Q=17$ (1 case), 11 (2 cases), 7 (8 cases), and numerous cases of $5,3,2$.

Bryant Tuckerman
IBM Thomas J. Watson Research Center
P. O. Box 2.18

Yorktown Heights, New York 10598

1. PETER HAGIS, JR. \& WAYNE L. McDANIEL, "On the largest prime divisor of an odd perfect number. II," Math. Comp., v. 29, 1975, pp. 922-924.
